

**The El Sol Science and Arts Academy: A Case Study** The Benefits of Rapid-Response Facility Solutions for K-12 District Planners Orange County Schools Facility Planners: May 11<sup>th</sup>, 2016

# Introductions



### Joe Dixon

President Dixon SmartSchoolHouse

Former Asst. Superintendent, Santa Ana Unified



### **Marijke Smit** Vice President Project Frog

Former Director of Strategies at MKThink



- 1. El Sol Context
- 2. District / Charter Partnership
- 3. Campus Development Model
  - Funding
  - Design
  - Delivery
- 4. Measuring Outcomes
- 5. Lessons Learned



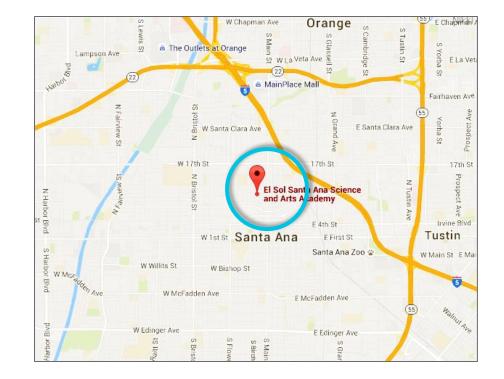
### El Sol Santa Ana Science and Arts Academy

An Excellent Public School

Founded in 2001

Grades: K-8

Number of Students: 850


District: Santa Ana Unified School District

### Features:

- 2.1 acre site
- 81% Free and Reduced Lunch
- 61% ESL
- Dual-Immersion Curriculum
- Onsite Preschool and Wellness Center
- Extended Day & Preschool Program

### Awards and Accolades:

- Title I Academic Achievement Awards
- California Association of Bilingual Educators Award
- 2014 Hart Vision Award: Charter School of the Year





**El Sol Science & Arts Academy** I 2012: 800 Kids in 100% Portables Santa Ana Unified School District, Santa Ana, CA

# The El Sol Development Team





Marshall

Foundation /

Fundraiser

Kaplan

Director,

Mirage



Monique Daviss

Exec. Director El Sol **John Sun** CEO Pacific Charter School Development



**Joe Dixon** Former Asst. Superintendent, Santa Ana Unified

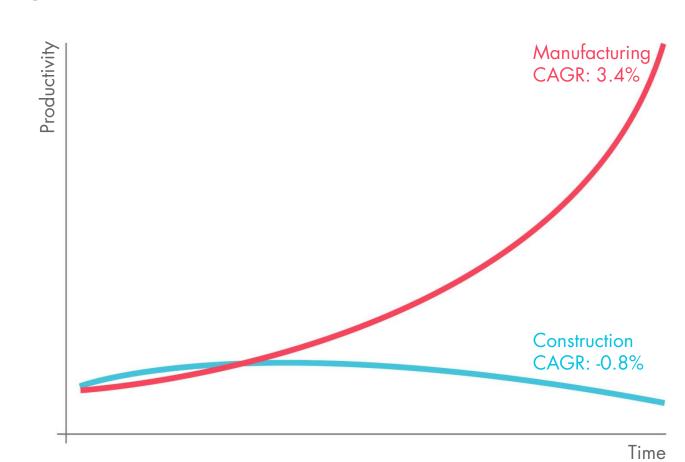
### MODULAR 100% of construction occurs off-site



Standard Module






Kit of Parts

### TRADITIONAL 100% of construction occurs on-site



Stick-built

| Building Alternatives Evaluation Matrix                                                                                              | Stick-Built<br>Construction | Modular | Permanent<br>Component<br>Buildings |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|-------------------------------------|
| <b>Building Performance &amp; Sustainability</b><br>Optimize learning via superior acoustics, indoor air quality, & natural daylight |                             |         |                                     |
| Image & Identity<br>Enhance surrounding community and provide connectivity to the outdoors                                           |                             |         |                                     |
| <b>Site Impact</b><br>Minimize construction waste and impact on surrounding community                                                |                             |         |                                     |
| <b>Schedule</b><br>Ensure project completion by January 2014                                                                         |                             |         |                                     |
| <b>Building Quality &amp; Adaptability</b><br>Provide high-quality, high-efficiency and long-lasting systems and structures          |                             |         |                                     |
| <b>First and Lifecycle Costs</b><br>Minimize upfront costs and increase energy efficiency and maintenance standards                  |                             |         |                                     |
| Adaptability to District Standards<br>Minimize lifecycle costs and ensure ease of long-term maintenance                              |                             |         |                                     |
| Procurement & Permitting<br>Expedite design process and streamline procurement                                                       |                             |         |                                     |
| Strong<br>Goal<br>Alignment Alignment Weak<br>Goal<br>Alignment Alignment Alignment                                                  |                             |         |                                     |



Source: Bureau of Labor Statistics, Bureau of Economic Analysis, Stanford University Dept. of Civil and Environmental Engineering Note: Productivity measured as real sector GDP divided by total labor hours

Productivity

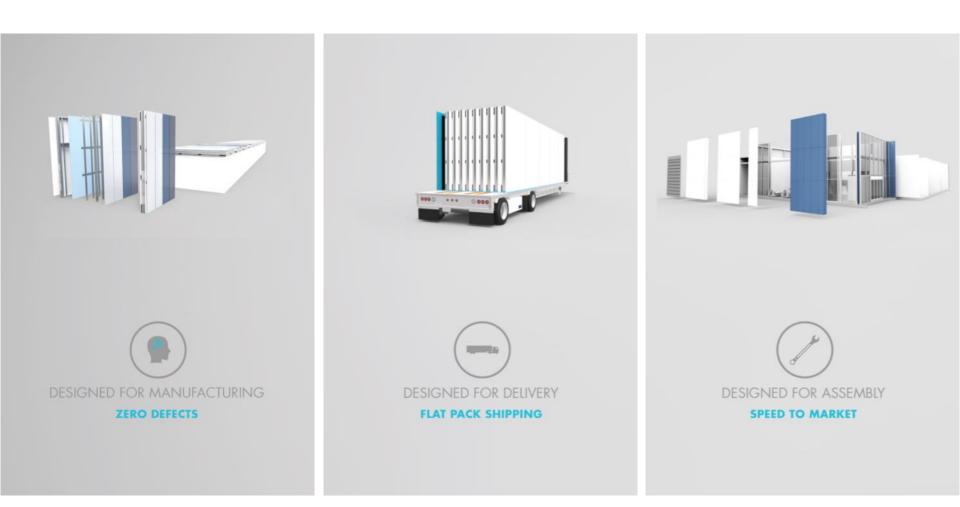
BOEING

Efficiency through Prefabrication



**TOYOTA** Standard Components Across Models






**IKEA** Flat packed Shipping & Assembly









Reverse Designed for Manufacturing, Delivery and Assembly

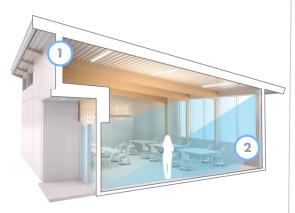
















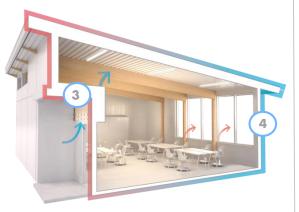



# light



Abundant natural daylighting is correlated with reduced absenteeism.

Large operable view windows, high clerestories, LED lighting and highperformance low-e glazing facilitate an even distribution of light and views to the outdoors.


#### 2 D 2 2

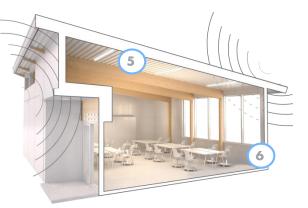
### Daylit classrooms yield up to 26% faster learning rates and 14% improved test scores.

Frog classrooms are designed to be 75% daylight autonomous.

### air

4




#### 3 Superior indoor air quality reduces rates of respiratory illnesses such as asthma, the #1 cause of absenteeism.

Voluminous spaces and operable windows encourage continuous air flow.

#### High-performance building envelops deliver significant energy & cost savings.

A life cycle analysis comparing Frog vs. traditional portables showed Frog buildings will generate \$690K in life time savings.

### sound



5 Good acoustics are linked to increased student performance and enhanced comprehension. Insulated roof and wall panels mitigate sound and reduce reverberation.

6

#### **Good acoustics are correlated** with increased teacher retention. Frog classrooms are designed to a max

45 dBA and 0.6 reverbation time.







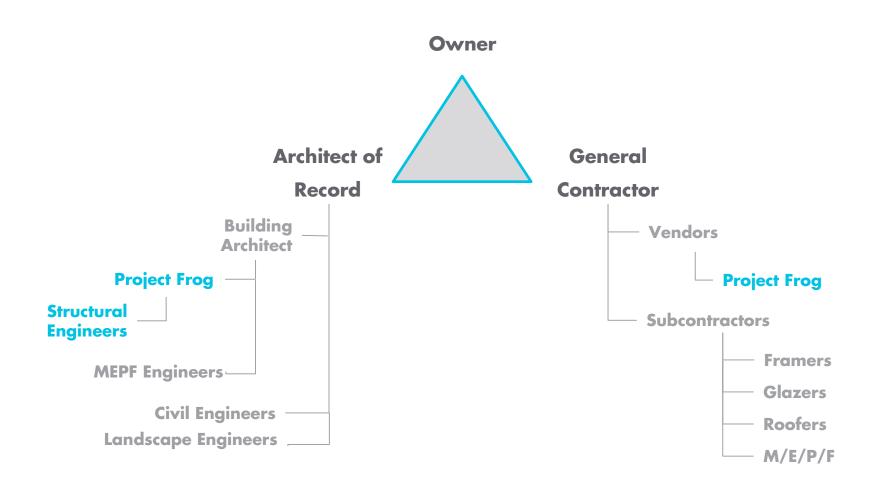




# 50%

The Frog Kit: Core and Shell Fast deployment, standardization where it matters

# 50%


General Contractor & Architect: Fit-Out & Finish Flexibility in program, MEP systems, and finishes

One size doesn't fit all.

### Solving the Critical Path for Speed of Delivery

& Adapting District Standards for Design, Maintenance and Operations





**PFI Roles and Responsibilities** 



**El Sol Science & Arts Academy 2014** Santa Ana Unified School District, Santa Ana, CA



**El Sol Science & Arts Academy – Present (2016)** Santa Ana Unified School District, Santa Ana, CA

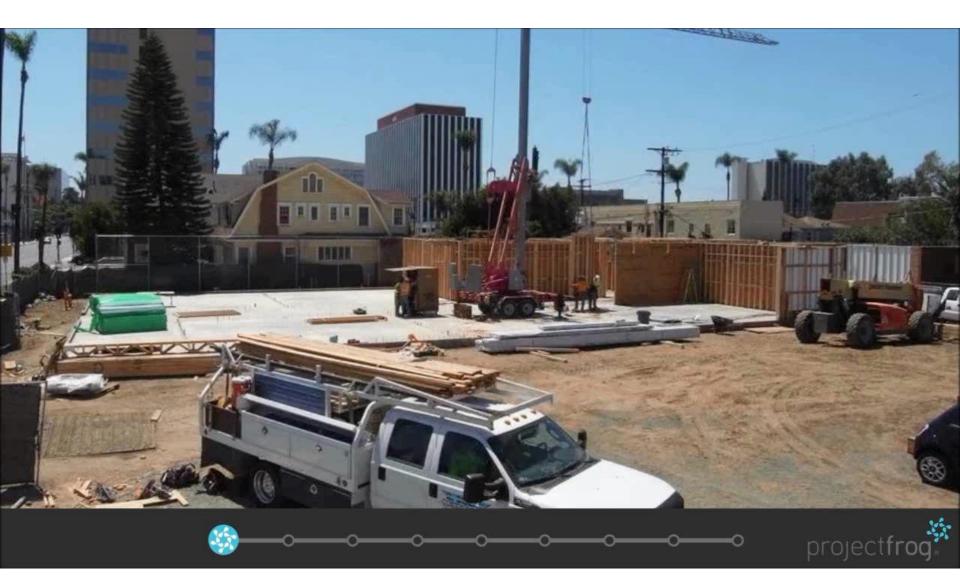




Towards a better way



**El Sol Science & Arts Academy – Present (2016)** Santa Ana Unified School District, Santa Ana, CA



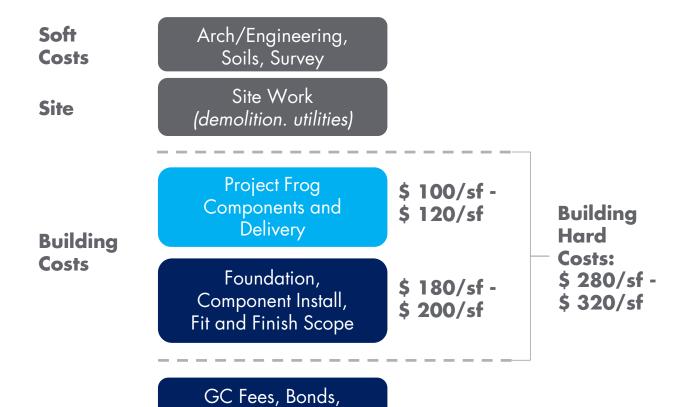




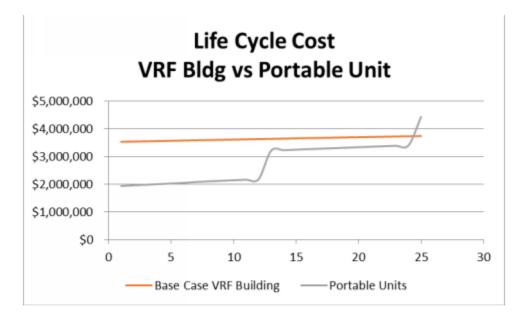








### El Sol Science + Arts Academy, 19,000 sf

9-week construction sequence

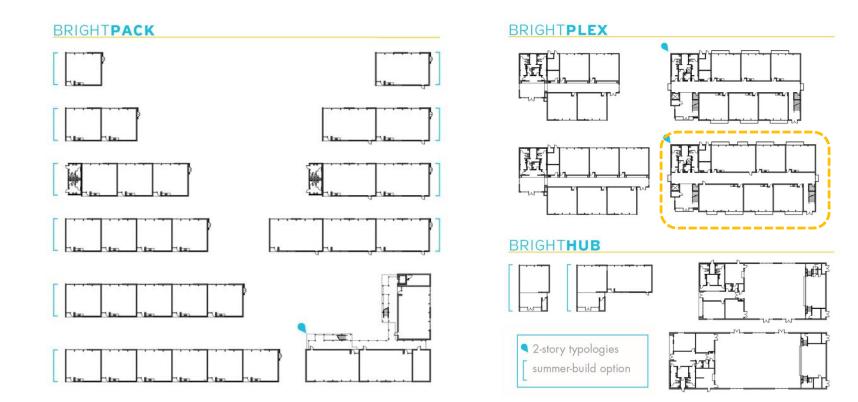

### **Directional Pricing**

Project Frog

Partners



General Cond/Req's




#### Chart 1: Life Cycle Cost Comparison

As the chart above depicts, the life cycle cost of the VRF building is \$3,737,254 at the end of 25 years, whereas the Portable unit had a life cycle cost of \$4,426,183. The permanent state of the art building has a life cycle cost savings of \$688,929.

### Measuring Outcomes | Life Cycle Analysis

### **DSA Off-the-Shelf Typologies**



# Summer Build 2015 97 Classrooms

Davis: Cesar Characz Flementary School Davis: Holmes Junior High School Fremoni: Mattos Elementary School Fremont: Azevada Elementary School OUSD Greenleaf Elementary School OUSD Greenleaf Elementary School SSFUSD: South San Francisco HS SSFUSD: Parkway MS SSFUSD: Puri Buri ES SSFUSD: Junipero Sera ES









El Sol Science & Arts Academy | Master Plan



# Project Frog Summer Build One-Story Typologies Up to 8,000 sf AOR Site,CDs ~4 weeks Division State Architect (DSA)

Intake, Back Check, Approval

~16 weeks

PF

Adapt

~4 weeks

~ 5 months

**Design - Permit** 



### **Project Frog Campus Expansion** | Two-Story and Multi-Purpose Typologies

Mfg

**7** ~ 1 mth

GC

Site

~ 4 wks

Kit

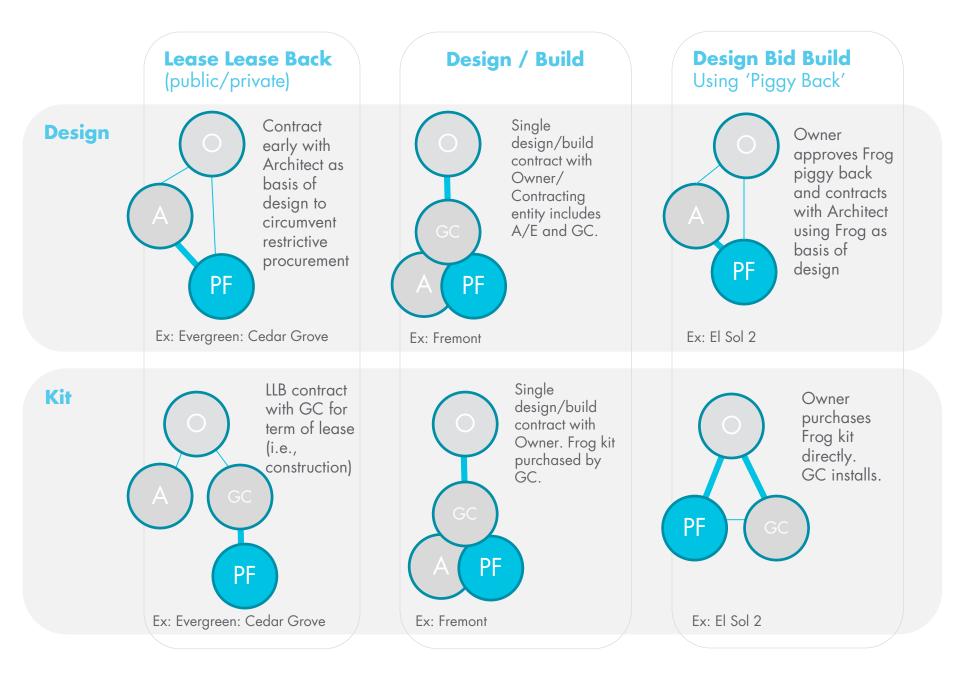
**PF Summer Build** 

 $\sim 2.5$  months

Install

~ 4 wks

| AOR<br>Site Design, CD<br>~ 8 weeks  | s<br>Division State Architect (DSA)<br>Intake, Back Check, Approval | <b>PF</b><br><b>Manufacturing</b><br>Just-In-Time Delivery | Kit<br>Install<br>~ 8 weeks           | 2-story                          |
|--------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|----------------------------------|
| PF<br>Site Adapt<br>~ 8 weeks        | ~16 weeks                                                           | GC<br>Site Work<br>6 - 8 weeks                             | GC<br>Fit & Finish<br>~ 10 - 12 weeks | ~12 months<br>Design- Completion |
| <b>Design – Permit</b><br>~ 6 months | >                                                                   | <b>PF Campus Expan</b><br>< 6 months                       | sion Build                            |                                  |

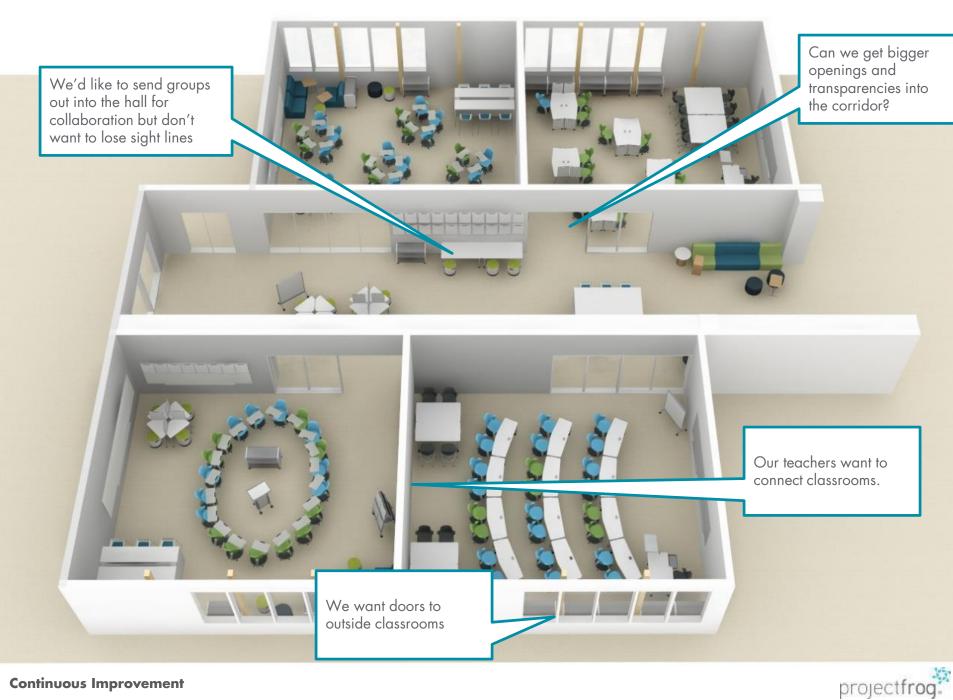

GC

E+E.

3 wks

### **Design – Bid – Build** | Conventional Delivery

|                                        |                                       |               |                                    |                   | Project Frog                     |                   |
|----------------------------------------|---------------------------------------|---------------|------------------------------------|-------------------|----------------------------------|-------------------|
| AOR<br>Design, CDs                     | DSA - Intake, Back Check,<br>Approval | OAC<br>Bid-VE | GC<br>Site Work                    | GC<br>Stick Build | delivery is <b>40-50%</b> faster | $\longrightarrow$ |
| ~ 16 weeks                             | ~ 16 weeks                            | ~ 6 - 8 wks   | 6 - 8 weeks                        | 8 + months        | than conventional construction   |                   |
| Design – Permit - Bid<br>8 - 10 months |                                       |               | <b>Construction</b><br>10 + months |                   |                                  | $\longrightarrow$ |




**Contracting** I Each procurement method demands different sales & pre-con strategies









**Continuous Improvement** 



**Product Evolution** I Increased flexibilities and transparencies





**MPR Rendering** South San Francisco USD

# **Lessons Learned**

Component construction was critical to success of the project

- Speed was a necessity not a nice to have given state of the campus
- High quality finishes signaled value to school & surrounding community
- Limited laydown area demanded 'Just In Time' materials delivery
- School integrated construction process into STEM related curriculum

Plan for Continuous Improvement

• PC can stymie product evolution-especially in 2-story

### Design/Build delivery allowed true design/delivery partnership

 HMC, Bernards and Frog collaborated from project conception – transparency of project costs passed to client

# Project Frog kit of parts slips easily into GC managed Project Schedule & sequencing

- 'Product only' scope gives GC flexibility for trade coordination
- Quickly delivered weather tight shell facilitates early utility rough-in and allows interior finishes earlier that stick built construction.
- Interior bathroom pods, while innovative and easy to install, caused potential issues for inclement weather

# VRF system, while highly efficient, needs consistent maintenance and commissioning